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Pattern Formation, Self-Organization, and
Self- Assembly of Microtubules

Project Summary

How do seemingly random mixtures of molecular components organize themselves into large-
scale cellular structures? Can we model this process mathematically, can we simulate it computa-
tionally, and what can we learn about the process of self-assembly? We propose to address these
questions by studying the mechanism of self-assembly in a system of microtubules and molecular
motors.

Recent in vitro experiments have shown that a system of microtubules and molecular motors is
capable of sustaining a surprising variety of large-scale two-dimensional structures (asters, vortices,
and other defects). We claim that the phenomenon of self-organization is evidence of an underlying
multiscale process, where nonlinear interactions on a microscopic scale result in the emergence of
coherent structures on the macroscopic scale. We propose to study this phenomenon as a problem
on three scales. The focus is on the mesoscopic scale, where a master equation describes the
evolution of the density of microtubules as a function of position and angular orientation. At this
level, the molecular motors enter implicitly through the pairwise interaction of the microtubules.
The actual form of the interaction kernel is determined from first principles and validated by
molecular dynamics simulations on the microscopic scale. Large-scale structures are studied on
the macroscopic scale through a reduced set of equations derived from the master equation. A
simple model based on this multiscale approach exhibits an orientational instability at sufficiently
large mean densities of the molecular motors. Moreover, the orientational instability leads to
the formation of vortices and asters, in agreement with the experiments. We propose various
generalizations to bring this simple model closer to a real system of motors and microtubules, and
we intend to perform extensive numerical simulations.

Applications. The potential impact of the proposed project extends over various disciplines.
The project is motivated by a central problem of biology, namely, the emergence of large-scale
coherent structures. The medium we have chosen to study this problem (microtubules and molec-
ular motors) is biologically significant. The results of the proposed study will enhance our under-
standing of experimental results and will stimulate further research in meaningful and interesting
directions. The proposed project will benefit the new discipline of computational science. The
proposed problem is a fascinating multiscale problem, with significant computational complexity
at several levels. The integration of numerical simulations at the different levels will be a major
challenge, and lessons learned here will be applicable to other problems of computational sci-
ence. A close interaction with the developers of important software packages, such as PETSc, will
provide feedback that will benefit their future development. Impact on physics can be expected
because molecular dynamics simulations are an integral part of the project. Lessons learned in
the project will advance the case for integration of molecular dynamics simulation codes in future
multiscale environments. The project will have educational benefits as well because it involves
graduate students and a junior researcher.



Pattern Formation, Self-Organization, and
Self- Assembly of Microtubules

Project Description

How do seemingly random mixtures of molecular components organize themselves into large-
scale cellular structures? Can we model this process mathematically, can we simulate it computa-
tionally, and what can we learn about the process of self-assembly? We propose to address these
questions by studying the mechanism of self-assembly in a hierarchical biological system composed
of microtubules and molecular motors.

Microtubules are hollow polar filaments that are self-assembled from tubulin dimers (a globular
protein). Figure 1 shows a three-dimensional view; the tubulin dimers are the
beadlike structures. Microtubules act like conveyer belts inside cells. They
move vesicles, granules, organelles such as mitochondria, and chromosomes via
special attachment proteins. They may work alone or join with other proteins
to form more complex structures such as cilia, flagellae, or spindles.

Molecular motors are proteins that do mechanical work through the hy-
drolization of adenosine triphosphate (ATP, the energy source of the living
cell). This mechanical work is used to move the molecular motor along a
microtubule in a direction determined by the polarity of the filament. (For
example, kinesin motors move toward microtubule “plus” ends, dynein mo-
tors toward “minus” ends.) The motion may have a transport function, or it
may apply a force to the microtubule for cell motility and cell division, as in
mitosis.

Three- Recent in wvitro experiments with purified motors and microtubules in
thin microchambers [1, 2] have shown a surprising variety of large-scale two-
dimensional structures, including asters, patterns where all filaments are ori-
ented radially, and vortices, patterns where all filaments are oriented at some
angle with respect to the radial direction; see Fig. 2. The final structure
depends on the relative concentrations of the molecular components. The
experiments also indicated that the final structure can be reached through
different assembly “pathways” and that dynamic transitions from one state to another can be
induced by varying the kinetic parameters.

Figure 1:
dimensional view
of a microtubule.

Large-scale structures such as those observed in the experiments arise through a process of
self-organization, where the interaction of nonlinear processes on the microscopic scale induce
emergent coherent behavior on the macroscopic scale. Under the appropriate circumstances, this
coherent behavior manifests itself in observable static or dynamic patterns. Thus, microtubules
and molecular motors constitute an interesting and accessible medium to study a central problem
in biology, namely, the origin of complex macroscopic structures.
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Figure 2: Self-assembled patterns observed in kinesin (top) and Ncd (bottom) for different con-
centrations of molecular motors [2].

1 Self-Organization

The self-assembly of microtubules into macroscopic structures is an example of self-organization
in energy-dissipating systems. The system does not evolve toward thermodynamic equilibrium;
however, it can produce stable steady and dynamic states. The eventual structure is determined
by a variety of parameters, including the concentration of the microtubules, the concentrations of
the various types of molecular motors, their processivity, and the time they spend bound at the
microtubule ends.

1.1 Mathematical Models

The experimental observation of self-assembly in highly simplified biological systems [1, 2] provided
a strong stimulus for theoreticians to devise mathematical models and support the experimental
findings with theoretical arguments.

The first computational results on the self-assembly of microtubules were reported in the late
1990s by Leibler and collaborators at Princeton [1, 2], who used a simplified molecular dynamics
model.

Lee and Kardar [3] proposed a phenomenological model, which included the transport of
molecular motors along microtubules and alignment of microtubules mediated by the molecular
motors. Numerical simulations showed patterns including vortices and asters; however, at suffi-
ciently high densities of the molecular motors, the model generated vortex configurations consisting
of only a single large vortex.

Kim et al. [4] generalized the phenomenological model of Ref. [3] by including separate densities



of free and bound molecular motors, as well as the density of microtubules. They found a mixed
pattern of asters and vortices at low motor densities, which gave way to one of vortices alone
as the motor density was increased. This finding was in direct contradiction with experimental
evidence [5], which indicated that asters give way to vortices as the motor density is decreased. The
model of Ref. [4] was revisited recently by Sankararaman et al. [6], who confirmed the conclusions
of Ref. [4].

A different approach was proposed by Kruse et al. [7]. These authors postulated that a
mixture of microtubules and molecular motors can be considered as an active viscoelastic material
obeying a generalized flux—force relation. While the authors obtained vortex and aster solutions,
their model has a large number of unknown parameters and is difficult to analyze.

Liverpool and Marchetti [8] derived a set of equations for the density and orientation of
microtubules by averaging the conservation law for their probability distribution function. In
the case of homogeneous microtubule distributions, however, their model does not exhibit any
orientation transition. Moreover, the model does not adequately describe the density instability,
as was pointed out recently by Ziebert and Zimmermann [9].

Recently, we pioneered a different approach [12], one that views the phenomenon of self-
assembly in a mixture of microtubules and molecular motors as the manifestation of a multiscale
process. The approach is anchored at the mesoscopic scale, between the microscopic and macro-
scopic scales; see Fig. 3. On the mesoscopic scale, the microtubules are modeled as polar filaments,

Microscopic level

i i Molecular dynamics
D simulations
Mesoscopic level Stochastic
P Master Equations
Macroscopic level Coarse-grained G
continuum equations

Figure 3: Block diagram illustrating the multiscale concept. The arrows on the right represent the
equation-free approach mentioned in Section 2.2.

while the molecular motors enter implicitly through the pairwise interaction of the filaments. In
the absence of molecular motors, the microtubules do not interact. In addition, the microtubules
may diffuse, and they can be subject to external forces. The fundamental equation is a master
equation for the evolution of the spatial and orientational distribution of the polar filaments. The
kernel describing the pairwise interaction of microtubules is assumed to be known; its precise form
is determined from first principles and validated by molecular dynamics simulations on the micro-



scopic scale, where both microtubules and molecular motors are accounted for. The approach is
thus reminiscent of the approach taken in the kinetic theory of gases [10, 11], where one studies
a distribution function in phase space, whose moments with respect to the velocity correspond to
macroscopic observables, such as the density, hydrodynamic velocity, and temperature of the gas.
The master equation is, in fact, the link between the microscopic scale, where the details of the in-
teractions between microtubules and molecular motors are worked out, and the macroscopic scale,
where the large-scale structures and the dynamics of the orientational moments of the distribution
function are observed.

Preliminary investigations [12] have shown that a mathematical model based on this multi-
scale approach to self-organization exhibits an orientational instability at sufficiently large mean
densities, which was missing in the model of Ref. [8]. Moreover, the orientational instability leads
to the formation of vortices and asters, in agreement with the experiments.

1.1.1 Prototype Model

We demonstrate the principle of self-organization of microtubules on a prototype model. The
model is sufficiently simple to explain the salient phenomena and, at the same time, typical of
the more complex phenomena that we propose to study. In this model, the microtubules are
represented by thin stiff rods. The rods interact pairwise, and the molecular motors enter the
model implicitly through the details of the interaction mechanism.

Assume that the rods lie in a plane. They have the same length [ and diameter d < I,
so each rod is fully characterized by the position of its center of mass and its in-plane orien-
tation with respect to a fixed direction. The spatial density of the rods is uniform, but their
angular distribution changes with time, because of rotational diffusion
and pairwise interactions among the rods. The rules governing the
(05 o o interaction of two rods are the same everywhere: interactions are in-
/7 e stantaneous and totally inelastic. Because of the interaction with the

molecular motors, the orientation of each of the two rods changes in-
// = i stantaneously to the average oii their initial orieptatior{s;.see Flg 4.
1 / The more general case of inelastic but not totally inelastic interactions
g?% can be handled similarly.
Figure 4: Schematic of
the inelastic interaction
of two rods.

(le
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The present model is similar to the Maxwell model of binary inelas-
tic collisions in the kinetic theory of gases [10, 11], with one important
difference. While the Maxwell model concerns a distribution of parti-
cle velocities, which can range over the entire space, the present model
concerns the distribution of orientation angles, which range over the
compact interval [—m,7]. This property allows us to apply the tech-
niques of Fourier analysis.

Let f(t,¢) denote the density of rods that are oriented at an angle ¢ (—7 < ¢ < 7) at time ¢
(t > 0). A straightforward argument leads to the following master equation for the rate of change



of f:

™

Onf = 0pf + | (e +30)f(p = 5w) = flo +w)f ()] dw. (1)

The first term on the right-hand side represents the effect of rotational diffusion. The integral
represents the effect of interactions among the rods, the first term being the gain due to an
interaction between two rods with initial orientations ¢ + %w and ¢ — %w (resulting in the final
orientations ¢) and the second term being the loss due to an interaction between two rods, one of
which has the initial orientation ¢ (resulting in orientations other than ¢); the integration extends
over all possible angles w. The variables have been made dimensionless by appropriate scalings.

Since f is 2m-periodic in ¢, we can decompose f into its Fourier harmonics,

™
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While f is a microscopic variable, its Fourier coefficients are macroscopic variables, which can be
measured. In fact, fy is related to the macroscopic density p, which is defined by the integral

™

pt) = [ [f(t,p)dp. (3)
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Integration of Eq. (1) shows that the master equation preserves the macroscopic density, so p
and, therefore, fy are constant in time. The real and imaginary parts of f; represent the average
orientation of the rods (up to a constant factor p),

0 =5 [ et ) dy. (4)

:% .

A straightforward computation yields the following system of equations for the Fourier coefficients:

et B +p)fe=2m > fufe-mS(m - k)w), k==+1,£2,..., (5)

m=—0oQ
where S(z) = z !sinz. (A prime ' denotes differentiation with respect to t.) We reduce this
infinite system to a finite system by considering smooth distributions whose Fourier modes with
|k| > 2 can be ignored:

fi+ (=44 p) i = =5fif (6)
frt(+p)fa = 20ff. (7)
(A star * denotes complex conjugation.)

Now, suppose that we are interested in the long-time behavior of f and that, on the time
scale of interest, the higher harmonic f is essentially in equilibrium. Then Eq. (7) reduces to the
algebraic equation (4 + p)fo = 27f2Z, which can be solved for f,. If we substitute the result in
Eq. (6), we obtain a single equation for fi,

Fi+ (1= 4 p) fo = — B4+ p) L fu 211, ®)



Notice that the coefficient of f; changes sign at a critical value p = p, = 47~ — 1 ~ 3.662. The
trivial solution (f; = 0) is therefore linearly stable for p < p., but as p increases, an instability will
arise. Near the threshold, the nonlinear term becomes significant, and it will eventually saturate
the instability. A good approximation for the coefficient of the nonlinear term near the threshold
of instability is %w(él +p.) !~ 2.18.

Equation (8) can be rewritten as a Landau equation for the average orientation 7,
7 =er — al|?r, (9)

where e = (477! = 1)p — 1 and & = 187(4 + p) 7. Near the threshold of instability, good approx-
imations for the coeflicients are ¢ ~ 0.273p — 1 and « ~ 2.18, and the evolution of the average
orientation is well described by the equation

' = (0.273p — 1)1 — 2.18|7|?T. (10)

This equation, together with the conservation equation p’ = 0, provides a reduced model for the
system under consideration, valid near the threshold of instability for the orientation of the rods.

Figure 5 gives the results of some numerical computations. It shows the stationary solution
of the master equation (1) for various values of p and, in the inset, the corresponding values of |7|?
(solid curve). Notice that the rods tend to align as the density increases. For comparison, we also

Figure 5: Stationary solutions of Eq. (1) for different values of p. Inset: |7|? vs. p from Eq. (1)
(solid curve) and Eq. (9) (dashed curve).

give the values of |7|? computed from Eq. (9) (dashed curve). The value is exact at the threshold
value p. and in close agreement with the true value in a neighborhood of p,.



1.1.2 Realistic Models

The prototype model discussed in the previous section, although far from realistic, already shows
two significant characteristics: (i) self-organization through pattern formation—the orientation of
the rods shows spontaneous alignment as the density increases, and (ii) modeling at more than
one scale—a master equation for the density of the rods at the microscopic level and a reduced
equation for their average orientation at the macroscopic level near the threshold of instability.
More realistic models will be required to get better insight into the phenomena of pattern formation,
self-organization, and self-assembly observed in the experiments. The generalizations must address,
among others, the specifics of the interaction of microtubules and molecular motors, as well as the
effects of spatial inhomogeneities, the mechanical properties of microtubules, flow effects, and the
effects of randomness. We claim that these generalizations exhibit the same or similar instabilities
and that these instabilities are critical for the formation of large-scale structures such as the
vortices and asters observed in the experiments. Clearly, the demands on the algorithms that we
propose for the numerical simulations will increase with the complexity of the models, as will the
computational challenges. We address these points in more detail below in Section 2. Here, we
discuss various generalizations of the prototype model that we expect to address in the timeframe
of the present project.

Localization of Interactions The prototype model does not account for the fact that the
outcome of a motor-induced interaction of two microtubules may depend on their mutual distance
and orientation prior to the interaction. Realistically, we expect that both factors play a role in
the overall behavior of the system.

Assuming that the microtubules are again represented by stiff rods with the same length [ and
thickness d, we introduce a new independent variable, z = (z1,z2), to represent the coordinates
of the center of mass of a rod in the plane. The distribution function generalizes to f(t, z, ), and
the master equation becomes

of = az,f—l—dingradf—l-//dydz/ dw

[K(y — 2,0+ 5w,0 — 30) f(y, 0 + 50) f (2,0 — 5w)8(5(y + 2) — x)
—K(y—2z,0,0 —w)f(y,0) (2,0 —w)d(y —z)]. (11)

The second term on the right-hand side accounts for translational diffusion of the rods in the
plane; D is the diffusion tensor, which is known from polymer physics. The integrals extend over
all positions y = (y1,y2) and z = (21, 22) in the plane and all orientation angles w € (—m, 7). They
represent the effect of molecular-mediated binary interactions (still assumed to be instantaneous)
among the rods. Following an interaction, the two rods acquire the same orientation, as before,
and their centers of mass occupy the same position midway between their positions prior to the
interaction.

A reasonable first-order approximation of the kernel for a binary interaction of two rods whose
centers of mass are located at the points y and z in the plane and whose orientation is given by



the angles ¢ and v, respectively, is

Ky 2,6.9) = (1 +Bly—2) - (my —m))e =1 (12)

Here, b is a cutoff length (of the order of the length [ of the rods), which limits the range of
the interactions; n, and n, are the unit normal vectors along the rods; and 3 is a measure
of the anisotropy of the interaction. The interaction of “diverging” rods is stronger than that
of “converging” ones. The anisotropy, which is related to the fact that microtubules are polar
filaments, varies considerably with the type and strength of the molecular motors; 8 = 0 if polarity
is negligible.

The model (11) can be analyzed by the same techniques as the prototype model (1). The
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Figure 6: Orientation fields for asters (left) and vortices (right) near the threshold of instability [12].

analysis is more complicated, but a preliminary investigation has shown that the model exhibits
an orientational instability as the density increases. Moreover, near the instability threshold, the
system is well described by a reduced equation for the average orientation of the rods. Aster and
vortex solutions, as well as transitions between these configurations, have been obtained for certain
ranges of parameter values; see Fig. 6. Further investigations are under way.

Nonuniform Motor Densities The prototype model, as well as its localized version discussed
in the previous section, assumed a spatially uniform distribution of the molecular motors. Clearly,
if the microtubules organize themselves in patterns, the motor density will not be uniform; for
example, one expects to find an increased density in the center of an aster, where more microtubules
are concentrated. Experiments [5] have shown that, indeed, the motor density plays a critical role
in morphogenetic processes.

Spatial variations of the motor density can be accounted for in the interaction kernel in the
master equation. Instead of taking the kernel as in (12), one can take a kernel that depends not only
explicitly on the difference y — z but also implicitly on the coordinates y and z through the motor
densities at these locations. The exact nature of this dependence can be determined independently
by means of detailed molecular dynamics simulations, which can only be done computationally.
One can then account for spatial variations in the motor density by coupling the master equation
for the microtubules with a field equation for the motor density.



The model can be further generalized to account for the fact that molecular motors can have
different “dwell times”—the time spent on a microtubule. For example, the molecular motors can
be parameterized by their dwell times, and the kernel can be computed as a function of dwell time.

Microtubules as Filaments The prototype assumed that the microtubules could be modeled
as stiff rods. In reality, microtubules are semiflexible filaments, which have a certain flexibility,
and their stiffness can influence the potential for pattern formation on the macroscopic scale.
The most direct way to account for this effect is to introduce the stiffness as another parameter
characterizing the microtubules and compute the interaction kernel as a function of this parameter,
again by means of detailed molecular dynamics simulations.

Other Effects Our models so far have been built on the assumption that we are dealing with
an isolated mixture of microtubules and molecular motors. No external effects were included.
Experiments [13] have shown that a molecular motor can attach to the surface of a container
while its “free” end walks along a microtubule, resulting in “self-propelled” directed motion of the
microtubule. Even a small fraction of absorbed motors can have a strong quantitative effect on
self-assembly. The effect can be accounted for by adding an advective term to the master equation,

O f + div(anf) = div(Dgradf) + af,f +Q(f; K). (13)

Here, « is a coefficient proportional to the fraction of absorbed motors, n is the unit vector in the
direction of the rod, and @) is the quadratic interaction term. The interaction kernel K incorporates
the effects of the molecular motors.

In reality, cell structures are in constant motion, and it may be important to study the struc-
tural stability of any pattern, for example in an external flow. Such a generalization requires
coupling the master equation with the equations of fluid flow (Navier-Stokes equations, or sim-
plified versions thereof). Similar techniques have been applied to multiphase flows of mixtures of
gases and granular materials [14].

Biological systems are by nature stochastic. Many of the variables and parameters that we
have discussed so far are either not known or known only with a certain likelihood. Consequently,
it is important to consider the structural stability of the models and, if possible, quantify the
uncertainty of the predicted patterns of large-scale coherent organization.

1.1.3 The Ultimate Challenge

The ultimate goal of the proposed project is to shed light on the mechanism underlying pattern for-
mation and self-organization at the cellular level. Clearly, cellular structures are three dimensional.
Asters and vortices may be realistic in two dimensions, but they are only first approximations to
reality, and our ultimate goal is to study ensembles of microtubules in three dimensions. Again
assuming that microtubules can be modeled as stiff rods of fixed length and thickness, we need at
least five variables to characterize a microtubule in three dimensions: the position of its center of
mass, ¢ = (1,2, 23), and the directional orientation of the rod, w = (¢, #). Hence, the density
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distribution of the microtubules is a function at least of z, w, and ¢, and possibly other variables.
A general master equation must account for changes caused by any of these variables. Hence, its
simplest form is

Of = divyDygrad, f + div,Dygrad, f + Q(f; K). (14)

The first term in the right member refers to changes from diffusion in physical space, the second
term to changes from orientational diffusion, and the last term to changes from binary interactions;
as usual, the interaction kernel K incorporates the effects of the molecular motors. We recall that
the latter appear only indirectly in the mesoscopic models, which are concerned solely with the
microtubules.

Given the considerable complexity of fully three-dimensional problems, it is unlikely that we
will be able to consider them in the scope of the proposed project. However, we expect to be able
to investigate solutions with a special structure in three dimensions, such as the three-dimensional
analog of the two-dimensional asters.

2 Research Program

The previous sections define the research program for the present proposal. The program focuses
on the problem of pattern formation in mixtures of microtubules and molecular motors and takes
a multiscale approach.

2.1 Multiscale Approach

The central concept in the proposed multiscale approach is that of a master equation on the
mesoscale, which takes input from the microscale and, in turn, yields information on topological
defects, such as asters and vortices, that may give rise to patterns on the macroscale.

Mesoscopic Scale The master equation describes the dynamics of an ensemble of interacting
microtubules on the mesoscopic scale. The microtubules are characterized by their spatial position,
orientation, and other parameters as appropriate. Information obtained on the microscopic scale
is incorporated in the interaction kernel and accounts indirectly for the action of the molecular
motors.

The purpose of a description at the mesoscopic level is to determine regimes where instabilities
may arise, identify the nature of these instabilities, and compare the results with the solution of
the coarse-grained equations on the macroscopic scale.

The code developed for simulations on the basis of the prototype model (1) and its general-
ization (11) will be hardened and extended in the directions outlined in Section 1.1.2. Extensions
under consideration will address the fact that the outcome of a motor-induced interaction among
two microtubules may depend on their mutual distance and orientation prior to the interaction.
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Further extensions will address nonuniform motor densities, the modeling of microtubules as flex-
ible elastic filaments, and advection effects from absorption of molecular motors. We will deter-
mine the proper formulation of stochastic effects by lifting the latter from the microscopic to the
mesoscopic scale and will include them in the models, for example, directly through a Langevin
formulation or indirectly by introducing random parameters in the various coefficients.

The computational studies will be complemented with analysis where appropriate. The pur-
pose here is to analyze the various approximations and determine their domain of validity. For
example, to arrive at the prototype model (1), we assumed without justification that higher har-
monics of the density function could be ignored and that its first and second harmonic evolved on
different time scales. Such assumptions need to be verified. As part of the proposed project, we
will develop a mathematical framework for the analysis of general master equations like Eq. (14).
This part of the analysis will build on recent work in the kinetic theory of gases [15].

Once a mathematical framework has been developed, one can analyze the approximations
inherent in the models, determine their domain of validity, and suggest alternatives where appro-
priate. The same framework can be used to analyze the numerical approximations underlying the
computational algorithms.

Bifurcation analysis at the level of the master equation will enable us to identify parameter
regimes where instabilities may arise and provide insight into the nature of these singularities. For
example, by considering two-dimensional solutions of the model (11) with particular symmetries,
we were able to explore parameter space and identify regions where asters and vortex solutions
could be anticipated. Information of this type is essential for the derivation of the reduced models
that will be studied at the macroscopic level.

Microscopic Scale On the microscopic scale, molecular dynamics simulations will be used to
characterize the elementary interactions of microtubules and molecular motors. The simulations
suggest and verify functional forms for the interaction kernels for the microtubules adopted at the
level of the master equation. The simulations also quantify the parameters and the influence of
stochastic effects on these interaction kernels.

The code used for the molecular dynamics simulations will be based on publicly available
software developed by researchers at the University of Heidelberg (CYTOSIM [16]). In CYTOSIM,
microtubules are modeled as semiflexible rods interacting with motors. Motors are characterized
by their velocity, strength, detachment/attachment probability, and diffusion coefficient.

The project will require an extension of the code to enable fully three-dimensional simulations,
parameter variations, and stochastic effects. Additional modifications under consideration will
address the attachment of molecular motors to the substrate and the effects of external forces in
fluid flow. The last case is especially challenging because it involves the computation of a drag
force from simulations of the coupled equations for microtubular motion and hydrodynamic flows.

Macroscopic Scale On the macroscopic scale, the focus is on coarse-grained quantities. In gen-
eral, we are dealing with “amplitude equations,” systems of a few nonlinear differential equations
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for the first few orientational moments of the density distribution function. Amplitude equations
can be derived systematically from the master equation and provide a reduced description of the
system near critical points (for example, where orientational phase transitions occur). The main
thrust of the research at this level is the identification of the critical points and the derivation
and analysis of the amplitude equations. Critical points are generically associated with bifurcation
phenomena and pattern formation, which are the essence of the process of self-organization. The
investigations at the macroscopic scale involve both analysis and computations.

2.2 Computational Challenges

The proposed project has the hallmark features of a state-of-the-art computational science project.
It addresses a multiscale problem requiring three levels of description, and the major challenge is
to couple the computations at the three levels in an efficient manner. Multiscale computations
will constitute a major component of the project.

The description of the biological system is anchored at the middle (mesoscopic) level, where
one needs to integrate a master equation that involves at least three independent variables (two
space variables and one orientational variable) besides time. The master equation itself requires
the specification of an interaction kernel obtained from simulations at the microscopic level. The
integration of the master equation must cover a sufficiently long time interval so that possible
instabilities and phase transitions can be identified with some degree of confidence. Once these
instabilities have been identified, details are found from simulations at the macroscopic level.

We propose an equation-free approach [17] to validate the approximation of binary interactions
at the mesoscopic level and the use of coarse-grained equations at the macroscopic level.

The computational requirements necessarily impose a severe constraint on the size of the spa-
tial domain that can be accommodated. The challenge here is to design a discretization method
that balances the need for spatial resolution with the need to see long-term trends in the tempo-
ral evolution of the system. We intend to apply domain decomposition techniques and develop
higher-order approximations (such as spectral elements) to reduce the number of degrees of free-
dom. Domain decomposition techniques apply to the equations at both the mesoscopic and the
macroscopic level.

The implementation will be based upon PETSc [18], a scalable software package for the
solution of partial differential equations on parallel architectures. Developed at Argonne, PETSc
has a proven record of enabling computational science on massively parallel computers.

The recent acquisition of a 2,048-processor Blue Gene/L supercomputer by Argonne National
Laboratory provides an ideal implementation platform to meet the challenges outlined above. Blue
Gene, whose architecture was motivated by the protein-folding problem, emphasizes the efficient
computation of long-range interactions, as encountered in molecular dynamics, and the ability to
integrate over increasingly long times. Thus it is well tuned to the computational needs of the
proposed project. Its low-latency three-dimensional torus network supports the efficient solution
of the master equation in two spatial dimensions (which involves three independent variables), as
well as the coarse-grained equations derived from the master equation in three spatial dimensions.
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3 Impact of the Project

The ultimate goal of the project is to shed light on the formation of large-scale coherent structures
in biological systems. For example, in eukaryotic cells, the intracellular architecture is determined
to a large extent by the collective behavior of the ensemble of proteins that constitute the cy-
toskeleton. Motor proteins and filaments are known to play an important role in determining the
final structure, but how their concentrations and the combination of plus- and minus-end mo-
tors contribute to the morphogenetic process is not understood. Experiments in highly simplified
biological systems [1, 2] have revealed a rich variety of self-assembled static and dynamic config-
urations. The current project will advance our understanding of the results of these experiments
and will stimulate further research in meaningful and interesting directions.

We also expect that the proposed project will benefit the new discipline of computational
science. The problem under consideration is a fascinating multiscale problem, with significant
computational complexity at all three levels. The integration of numerical simulations at different
levels of detail will be a major challenge, and lessons learned here will be applicable to other
problems of computational science.

The investigators expect to interact closely with the authors of PETSc (who are at the same
institution as three of the PIs on the proposed project) and thus provide feedback that might
benefit future developments of this major computer science project.

Impact on physics can be expected because molecular dynamics simulations are an integral
part of the project. Lessons learned in the project will advance the case for integration of molecular
dynamics simulation codes in future multiscale environments.

The project will have educational benefits as well because it involves graduate students and
a junior researcher.

Outreach will consist of the usual means of dissemination through publications in the profes-
sional literature and presentations at technical meetings.

4 Program Personnel

Principal Investigator:
e Hans G. Kaper, Senior Scientist, Mathematics and Computer Science Division, ANL

Areas of expertise: Applied mathematics, differential equations, asymptotic analysis, scien-
tific computing

Consultants:

e [gor Aronson, Scientist, Materials Science Division, ANL
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Areas of expertise: Condensed matter physics, granular media, biodynamics, scientific com-
puting

e Lev S. Tsimring, Research Scientist, Institute for Nonlinear Science, UCSD

Areas of expertise: Condensed matter physics, granular materials, pattern formation, biody-
namics

Postdoctoral Scholar: Dmitry Karpeev, Ph.D., computer science, Old Dominion University
(2002); Mathematics and Computer Science Division, ANL

Research Associates: A proposal similar to the present one has been submitted to the National
Science Foundation, CISE Directorate, Division of Computing and Communication Foundations
in response to Program Solicitation NSF05-501. This proposal includes a request for graduate
student support at UCSD.

5 Computing Resources

The proposed project will rely heavily on the computing facilities available at ANL, which include
a recently acquired 1,024-node (2,048-processor) single-rack Blue Gene/L supercomputer [19] and
a 350-node Linux cluster. We intend to join the Argonne-based Blue Gene Consortium [20], a user
group dedicated to the development of Blue Gene/L applications and systems software.

References Cited

1. F. J. Nédélec, T. Surrey, A. C. Maggs, S. Leibler, Nature 389, 305 (1997)

2. T. Surrey, M. B. Elowitz, P.-E. Wolf, F. Yang, F. J. Nédélec, K. Shokat, and S. Leibler,
Science 292, 1167 (2001)

3. H. Y. Lee and M. Kardar, Phys. Rev. E 64, 056113 (2001)

4. J. Kim, Y. Park, B. Kahng, and H. Y. Lee, J. Korean Phys. Soc. 42, 162 (2003)

5. F. Nedelec, T. Surrey, and A. C. Maggs, Phys. Rev. Lett. 86, 3192 (2001)

6. S. Sankararaman, G. I. Menon, and P. B. Sunil Kumar, Phys. Rev. E 70, 031905 (2004)

7. K. Kruse, J. F. Joanny, F. Jiilicher, J. Prost, and K. Sekimoto, Phys. Rev. Lett. 92, 078101
(2004)

8. T. B. Liverpool and M. C. Marchetti, Phys. Rev. Lett. 90, 138102 (2003); cond-mat /0406276

9. F. Ziebert and W. Zimmermann, Phys. Rev. Lett. 93, 159801 (2004)

15



10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases, Cambridge
University Press (1952)

J. H. Ferziger and H. G. Kaper, Mathematical theory of transport processes in gases, North-
Holland Publ. Comp., Amsterdam (1972)

I. S. Aronson and L. S. Tsimring, Pattern formation of microtubules and motors: interaction
of polar rods, manuscript in preparation

R. D. Vale and R. A. Milligan, Science 288, 88 (2000)

D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descrip-
tions Academic Press, Boston (1994)

B. Perthame, Bull. Am. Math. Soc., 41,205-244 (2004)

F. J. Nédélec et al., Cell Biology and Biophysics Program, University of Heidelberg, Germany
(www.embl-heidelberg.de/Externallnfo/nedelec/cytosim/index.html)

C. W. Gear and I. G. Kevrekidis, J. Sci. Comp. (in press, 2004); also physics/0312094 at
arXiv.org

S. Balay, et al., PETSc Users Manual, ANL-95/11 - Revision 2.1.5 Argonne National Lab-
oratory (2004) (http://www.mcs.anl.gov/petsc)

http://www.research.ibm.com/bluegene

http://www.mcs.anl.gov/bgconsortium

16



Igor S. Aronson

Professional Preparation
1987 Academy of Science, Institute of Applied Physics, Gorky, Russia, Ph.D. Physics

1982 Gorky State University, Russia, M.Sc. Physics (Summa Cum Laude)
1981 Gorky State University, Russia, B.Sc. Physics

Appointments
1999-present

1996-99
1993-96
1991-93
1987-91
1982-86

Staff Physicist, Argonne National Laboratory

Visiting Scientist, Argonne National Laboratory

Senior Lecturer, Bar Ilan University, Israel

Research Associate, The Hebrew University of Jerusalem

Research Associate, Institute of Applied Physics, Gorky, Russia

Junior Research Associate, Research Institute of Microelectronics, Gorky, Russia

Relevant Publications

1. I. S. Aranson and L. S. Tsimring, “Model of Coarsening and Vortex Formation in Vibrated
Granular Rods,” Phys. Rev. E, 67, 021305 (2003)

. M. V. Sapozhnikov, Y. V. Tolmachev, I. S. Aranson, and W.-K. Kwok, “Dynamic Self-
Assembly and Patterns in Electrostatically Driven Granular Media,” Phys. Rev. Lett., 90,
114301 (2003)

. I S. Aranson and M. V. Sapozhnikov, “Theory of Pattern Formation of Metallic Micropar-
ticles in Poorly Conducting Liquid,” Phys. Rev. Lett., 90, 114301 (2004)

. M. V. Sapozhnikov, I. S. Aranson, W.-K. Kwok, and Y. V. Tolmachev “Self-Assembly and
Vortices Formed by Microparticles in Weak Electrolytes,” Phys. Rev. Lett., 93, 084502 (2004)

. 1. S. Aranson and L. S. Tsimring, “Pattern Formation of Microtubules and Motors: Inelastic
Interaction of Polar Rods,” Phys. Rev. Lett., submitted (2004)

Other Publications

1. I. S. Aranson and L. S. Tsimring, “Continuum Description of Avalanches in Granular Media,”

Phys. Rev. E, 64, 020301 (2001)

. J. Li, I. S. Aranson, W.-K. Kwok, and L. S. Tsimring, “Periodic and Disordered Structures
in a Modulated Gas-Driven Granular Layer,” Phys. Rev. Lett., 90, 134301 (2003)

. D. Volfson, L. S. Tsimring, and I. S. Aranson, “Order Parameter Description of Stationary
Partially Fluidized Shear Granular Flows,” Phys. Rev. Lett., 90, 254301 (2003)

. D. Volfson, L. S. Tsimring, and I. S. Aranson, “Stick-Slip Dynamics of a Granular Layer
Under Shear,” Phys. Rev. E, 69, 031302 (2004)

. I. S. Aranson and L. Kramer, “The World of Complex Ginzburg-Landau Equation,” Rev.
Mod. Phys., 74, 99-143 (2002)

17



Synergistic Activities

1. Organizer and Scientific Director, EuroSummer School and NATO Advanced Studies In-
stitute on “Pattern Formation, Granular Physics and Soft Condensed Matter,” Benasque,
Spain, Sept. 4-Oct. 8, 2003

2. Co-Organizer, NATO Advanced Studies Institute on “Self-Assembly, Pattern Formation and
Growth Phenomena in Nano-Systems,” St. Etienne de Tinee, France, Aug. 28-Sep. 12, 2004

Collaborators in past 48 months

E. Ben-Naim (LANL), H. Chate (CEA, France), E. Clement (ESPCI, France), G. W. Crabtree (Ar-
gonne), A. Golovin (Northwestern), A. Gurevich (U Wisconsin), H. Kaper (Argonne), A. Koshelev
(Argonne), Wai Kwok (Argonne), B. Meerson (Jerusalem, Israel), J. Olafsen (U Kansas), A. Peleg
(LANL), Y. Tolmachev (Kent University), L. Tsimring (UCSD), V. Vinokur (Argonne), V. Vlasko-
Vlasov (Argonne), D. Volfson (UCSD), U. Welp (Argonne)

Advisors

Graduate: Prof. Mikhail Rabinovich (now at UCSD)
Postdoctoral: Prof. Lorenz Kramer (University of Bayreuth, Germany)

Graduate Students Supervised (total of 2)

Gogi Singh (Northwestern University)
Kevin Kohlstedt (University of Kansas)

Postdoctoral Associates Supervised (total of 6)

Maksim Sapozhnikov, Institute of Physics for Microstructures, Russia (2004);
Jie Li, Argonne (2004);

Alexei Snezhko, Argonne (2004);

Valerii Kalatski, University of San-Francisco (2001);

Daniel Howell, now at Naval Analysis Inc. (2001);

Daniel Blair, Harvard University (2000)

Honors and Awards

Gold Medal, All-Union (USSR) competition of M.Sc. theses (1982)
Alexander-von-Humboldt Fellowship, Germany (1991)

Wolfson Research Fellowship, Israel (1991)

Guastello Research Fellowship, Israel (1993)

Fellow, American Physical Society, Division of Condensed Matter Physics (2002)

18



Hans G. Kaper

Professional Preparation

1965 Rijksuniversiteit Groningen, Netherlands, Ph.D. Mathematics and Physical Sciences

(cum laude)

1960 Rijksuniversiteit Groningen, Netherlands, M.Sc. Mathematics and Physical Sciences
1957 Rijksuniversiteit Groningen, Netherlands, B.Sc. Mathematics and Physical Sciences

Appointments

2000—present  Sr. Fellow, Computation Institute, The University of Chicago
1982—present  Sr. Mathematician, Argonne National Laboratory

2001-04 Program Director, National Science Foundation

1987-91 Director, Mathematics and Computer Science Division, Argonne National Laboratory
1969-92 Mathematician, Argonne National Laboratory

1967-69 Associate Professor, University of Groningen, Netherlands

1965-67 Assistant Professor, University of Groningen, Netherlands

Visiting and Temporary Positions

Adjunct Professor
Visiting Professor
Visiting Professor
Visiting Professor
Adjunct Professor
Visiting Professor
Visiting Professor
Visiting Professor
Sr. Scientific Officer
Research Associate

University of Illinois at Urbana-Champaign (School of Music), 2004—present
Université Bordeaux 1, Bordeaux, France, 2000

Université Toulouse I, Toulouse, France, 1995

Université Claude Bernard, Lyon, France, 1993

Northern Illinois University, 1982-92

Northwestern University, 1978-80, 1984-85

Universitdt Wien, Vienna, Austria, 1976-77

Universiteit van Amsterdam, 1976-77

Mathematisch Centrum, Amsterdam, 1976-77

Stanford University, 196667

Relevant Publications

1. A. Zagaris, H. G. Kaper, and T. J. Kaper, “Fast and Slow Dynamics for the Computational
Singular Perturbation Method,” Multiscale Modeling and Simulation 2 (2004) 613-638

2. H. G. Kaper, C. G. Lekkerkerker and J. Hejtmanek, Spectral Methods in Linear Transport
Theory, Birkhauser Verlag, Basel, 1982

3. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases,
North-Holland Publ. Company, Amsterdam, 1972

Other Publications

1. A. Zagaris, H. G. Kaper, and T. J. Kaper, “Two Perspectives on Reduction of Ordinary
Differential Equations,” Math. Nachrichten (to appear)

2. A. Zagaris, H. G. Kaper, and T. J. Kaper, “Analysis of the Computational Singular Pertur-
bation Reduction Method for Chemical Kinetics,” J. Nonlinear Science 14 (2004) 59-91

19



3. H. G. Kaper and T. J. Kaper, “Asymptotic Analysis of Two Reduction Mechanisms for
Systems of Chemical Reactions,” Physica D 165 (2002) 66-93

4. T. Colin, C. Galusinski, and H. G. Kaper, “Waves in Ferromagnetic Media,” Communications
in PDEs 27 (2002) 1625-1658

5. J. S. Jiang, H. G. Kaper, and G. K. Leaf, “Hysteresis in Layered Spring Magnets,” Discrete
and Continuous Dynamical Systems — Series B 1 (2001) 219-232

Synergistic Activities

1. Program Director, Applied and Computational Mathematics, Division of Mathematical Sci-
ences, National Science Foundation (2001-04)

2. Chairman, QANU/Research Assessment of Mathematics, under the auspices of the Royal
Netherlands Academy of Arts and Sciences (2003; report published August 2004)

3. Member, Committee of Visitors, Division of Mathematical Sciences, NSF (2001)
4. Co-Chairman, Theory Institute Dimension Reduction for Chemical Kinetics Argonne (2000)

5. Associate Editor: Integral Equations and Operator Theory, Transport Theory and Statisti-
cal Physics, J. of Engineering Mathematics; Editor-at-Large: Applied Mathematics, Marcel
Dekker, Inc.

Collaborators in past 48 months

I. S. Aronson (Argonne), T. Colin (University of Bordeaux I), M. J. Davis (Argonne), C. Galusin-
ski (University of Bordeaux I), M. Garbey (University of Houston), M. Grimsditch (Argonne),
J. Guessford (UIUC), T. J. Kaper (Boston University), D. A. Karpeev (Argonne), G. K. Leaf
(Argonne), S. Tipei (UIUC), S. Wang (Indiana University), A. Zagaris (Boston University)

Advisors

Graduate: Prof. A. L. van de Vooren (University of Groningen)
Postdoctoral: Prof. J. H. Ferziger (Stanford University, deceased)

Students and Postdocs Supervised

None officially, but I regularly supervise participants in Argonne’s Research Participation Programs
for undergraduate and graduate students and work on a daily basis with the postdocs in Argonne’s
MCS Division.

Honors and Awards

Corresponding member, Royal Netherlands Academy of Arts and Sciences
NATO Science Fellowship, 196667
EURATOM Research Fellowship, 1961

20



Dmitry A. Karpeev

Professional Preparation

2002 Old Dominion University, Ph.D. Computer Science
1996 Old Dominion University, B.Sc. Applied Mathematics (Summa Cum Laude)

Appointments

2002-present Postdoctoral Researcher, Argonne National Laboratory
2000-2002 Givens Fellow, Argonne National Laboratory

Publications

1. M. Grimsditch, G. K. Leaf, H. G. Kaper, D. A. Karpeev, R. E. Camley, “Normal Modes of
Spin Excitations in Nanoparticles,” Phys. Rev. B (to appear)

2. D. A. Karpeev and C. M. Schober, “Local Lagrangian Formalism and Discretization of the
Heisenberg Magnet Model,” Mathematics and Computers in Simulation (to appear)

3. A. L. Islas, D. A. Karpeev, and C. M. Schober, “Geometric Integrators for the Nonlinear
Schrédinger Equation,” J. Comp. Phys. 173 (2001) 116-148

4. D. A. Karpeev and C. M. Schober, “Symplectic Integrators for Discrete Nonlinear Schrédinger
Systems,” Mathematics and Computers in Simulation, 56(2) (2001) 145-156

Collaborators in past 48 months

R. E. Camley (U Colorado at Colorado Springs), M. Grimsditch (Argonne), A. Islas (U Central
Florida), H. G. Kaper (Argonne), D. E. Keyes (Columbia U), M. G. Knepley (Argonne), G. K. Leaf
(Argonne), C. M. Schober (U Central Florida), E. E. Selkov (Argonne)

Advisors

Graduate: Prof. D. E. Keyes (now Columbia), Prof. C. M. Schober (now U Central Florida)
Postdoctoral: Dr. E. E. Selkov (Argonne)

Honors and Awards

Outstanding Graduating Senior, Mathematics Department, Old Dominion University (1996)
GAANN Fellowship, USA, Germany (1996-2002)
Givens Fellowship, Argonne, USA (2000)

21



Lev S. Tsimring

Professional Preparation

1985
1980

Institute of Applied Physics, Gorky, Russia, Ph.D. Physics
Gorky State University, Russia, M.Sc. Physics

Appointments

1992
1980

—present Research Scientist, University of California, San Diego
-91 Research Scientist, Institute of Applied Physics, Gorky, Russia

Relevant Publications

1.

Othe

1.

D. Volfson, L. S. Tsimring, and A. Kudrolli, “Anisotropy driven dynamics in vibrated gran-
ular rods,” Phys. Rev. E, 70, 051312 (2004)

. D. Volfson, L. S. Tsimring and I .S. Aranson, “Order parameter description of stationary

partially fluidized shear granular flows,” Phys. Rev. Lett., 90, 254301 (2003)

. I S. Aranson and L. S. T'simring, “Dynamics of the constrained polymer collapse, Europhysics

Letters, 62(6), 848-854 (2003) A

I. S. Aranson and L. S. Tsimring, “Model of coarsening and vortex formation in vibrated
granular rods, cond-mat/0203237, Phys. Rev. E, 67, 021305 (2003)

. A. M. Delprato, A. Samadani, A. Kudrolli, and L. S. Tsimring, “Swarming ring patterns in

bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett., 87, 158102 (2001)

r Publications

H. D. I. Abarbanel, R. Brown, J .J. Sidorowich, and L. S. Tsimring, “The analysis of observed
chaotic data in physical systems,” Rev. Mod. Phys., 64(5), 1331-1393 (1993)

. N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. I. Abarbanel, “Generalized synchro-

nization of chaos in directionally coupled chaotic systems,” Phys. Rev. E, 51(2), 980-994
(1995)

. E. Ben-Jacob, 1. Cohen, O. Shochet, I. S. Aranson, H. Levine, L. S. Tsimring, “Complex

bacterial patterns,” Nature, 373 (6515), 566 (16 February 1995)

H. Levine, I. Aranson, L. Tsimring and T. Truong, “Positive genetic feedback governs cAMP
spiral wave formation in Dictyostelium,” Proc. Natl. Acad. Sci. USA, 93, 6382-6386 (1996)

. L. S. Tsimring and A. S. Pikovsky, “Noise-induced dynamics in bistable systems with delay,”

Phys. Rev. Lett., 87, 250602 (2001)

22



Synergistic Activities
1. Associate Director, Institute for Nonlinear Science, UCSD, 2000-present

2. Organizer, Annual Winter Schools in Communications With Chaos, 1999-2003

3. Co-chair, Gordon Research Conference on Granular and Granular-Fluid Flow, 2002

Collaborators in past 48 months

H. D. I. Abarbanel (UCSD), I. S. Aranson (Argonne), J. Hasty (UCSD), L. Larson (UCSD),
D. Huber (UCSD), R. Huerta (UCSD), A. Kudrolli (Clark), A. Pikovsky (Potsdam), M. Rabinovich
(UCSD), N. F. Rulkov (UCSD), R. Tenny (UCSD), V. M. Vinokur (Argonne), D. Volfson (UCSD),
A. Volkovskii (UCSD)

Advisors

Graduate: L. A. Ostrovsky (Gorky State University, Institute of Applied Physics), B M. I. Rabi-
novich (Institute of Applied Physics, currently at UCSD)

Graduate Students Supervised (total of 1)

Y. Nikolaeva (Institute of Applied Physcs, Gorky)

Postdoctoral Associates Supervised (total of 7)

M. Sushchik (Thermowave),
L. Korzinov (UCSD),
G.-M. Maggio (UCSD),

D. Volfson (UCSD),

A. Volkovskii (UCSD),

R. Tenny (UCSD),

Z. Tazev (UCSD)

Undergraduate Research Students

D. K. Clark, S. C. Young, P. Seliger (UCSD)

23



Budget
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